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Abstract. This paper concentrates on the finite-time synchronization (FTS) and the quasi-
synchronization (QS) problems for a kind of fractional-order fuzzy BAM neural networks with
time delays (FOFBAMNNs). In order to reach the goals of synchronization, two novel controllers
are designed. Then, based on finite-time stability theorem, Lyapunov function theory, and several
inequality techniques, through the application of two different designed controllers, several criteria
for both FTS and QS are established. Moreover, more precise error level and settling times are
given. The effectiveness of the derived criteria is ultimately validated through two simulations.

Keywords: finite-time synchronization, quasi-synchronization, BAM neural networks, Caputo
derivative, fuzzy term.

1 Introduction

In 1988, Kosko proposed the bidirectional associative memory neural network (BAMNN)
as the first instance of its kind [7, 8]. BAMNN typically comprises two layers of neu-
rons, which are used to store and process two different types of data. BAMNN uses
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a bidirectional feedback mechanism, which enables the input and output to be mapped
toeach other. Different from the traditional one-way associative memory model, the
BAM neural network can realize the mutual mapping and association of information
between two sets of neurons through the mechanism of bidirectional information prop-
agation. This bidirectional associative mechanism makes the BAM neural network have
broad application prospects in the fields of associative memory [19], pattern recogni-
tion, and image processing [32]. To date, considerable research has been conducted on
the exponential stability, Mittag-Leffler-type stability, and asymptotic stability of de-
layed BAM neural networks, leading to numerous significant findings regarding global
stability.

With the deepening of research, the theory and application of BAM neural network
have been further developed, especially in the study of BAM neural network model
under complex conditions such as time delay [14], stochastic perturbations [11], fusion
of medical images and nonlinear dynamics [12], significant progress has been made. In
most practical situations, time delay cannot be avoided. The neural network with time
delay can simulate the dynamic behavior in the real system more realistically. Zhao et al.
and Lin et al. developed two new predator–prey models with time delay in [34] and [15],
respectively, and studied the relevant dynamical properties of the system. Cui et al. [4]
studied the existence, uniqueness, and bifurcation behavior of a class of five-dimensional
BAM neural network solutions that conform to objective reality. In addition, since fuzzy
logic can handle uncertainty and ambiguity in the system, it is very meaningful to com-
bine fuzzy terms with BAMNNs to form fuzzy BAMNNs (FBAMNNs). FBAMNNs can
better cope with noise interference and enhance the model’s antinoise ability, which
find extensive application in areas such as automatic control, image processing, and
pattern recognition. Therefore, the introduction of fuzzy terms enhances the robustness,
adaptability, and accuracy of BAM neural networks. At present, there are many literatures
on the synchronization problem of FBAMNNs, and good results have been obtained
[26, 28].

Fractional-order calculus (FC) has been widely used in control system, biomedical
engineering [27], materials science, and electrical engineering. Compared with traditional
integer-order calculus, FC offers notable benefits in modeling memory effects and hered-
itary phenomena. This enables FC to serve as a robust tool for more accurately modeling
real-world systems. Fractional-order neural networks (FONNs) offer a more precise char-
acterization of dynamic behaviors. The nonlocality of fractional derivatives effectively
captures historical dependencies, enhancing the system’s generalization ability in han-
dling complex nonlinear problems. Moreover, FONNs demonstrate greater adaptability,
making them suitable for diverse dynamic environments such as time delay systems [1],
chaotic systems [21], and uncertain systems, where traditional neural networks often
struggle. Additionally, fractional-order learning rules accelerate network convergence,
improve optimization efficiency, and enhance training robustness. Hence, integrating FC
with BAM neural networks has become increasingly essential. In [20], a novel fractional-
order integral inequality has been established, effectively accounting for the influence of
both the delay factor and the order of the fractional derivative. Xu et al. [25] analyzed the
stability and the emergence of Hopf bifurcation.
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The synchronization of NNs, regarded as one of the most intriguing and essential
research areas [2,23], has attracted extensive attention from scholars owing to its extensive
use in areas including image encryption [24], circuit systems, cryptography, and so on.
Synchronization can be classified based on different synchronization times into two main
categories: infinite-time synchronization (IFTS) and finite-time synchronization (FTS).
The former encompasses categories such as complete synchronization (CS) [16] and
QS [22], Mittag-Leffler synchronization [17]. Among these, QS is notable for allowing
small errors between systems, which makes it especially practical for systems involving
fuzzy terms. However, in many real-world scenarios, it is usually preferable to implement
synchronization within a finite time frame as it addresses the needs for fast response,
stability, and accuracy. Consequently, studying the FTS of FOFBAMNNs holds signif-
icant value. Recently, several important findings on FTS in neural networks have been
published.

Based on the above analysis, our study seeks to address both FTS and QS in delayed
FOFBAMNNs. The primary contributions of this paper can be outlined as follows:

(i) Distinct from the model in [28, 30], Caputo derivative operator, time delay, and
fuzzy terms are considered in the model, which makes the proposed model more
general and less conservative.

(ii) By designing an innovative hybrid nonlinear controller, this paper derives a set of
verifiable criteria for FTS. These criteria are expressed as algebraic inequalities
and provide a clear estimation of the finite settling time.

(iii) In distinction from the adaptive controllers [16] and linear feedback controller
[30], this paper introduces a novel and useful class of controller: adaptive nonlin-
ear feedback controllers, which are being applied for the first time to achieve QS
problem in FOFBAMNNs.

The structure of this paper is outlined as follows: Section 2 introduces key definitions
and lemmas related to FC along with the considered FOFBAMNNs with fuzzy terms. In
Section 3, several sufficient criteria for QS and FTS are derived based on newly designed
controllers. Section 4 validates the theoretical outcomes through numerical simulations,
while Section 5 concludes the paper and suggests future research directions.

Notations. For simplicity, recognizable symbols will be employed in the following
sections. R and Rn represent the set of real numbers and n-dimensional real space,
respectively. Γ(·) denotes the gamma function. The sign(·) is the standard sign func-
tion. C n([t0,+∞,R) represents a set of continuous nth-order differential function from
[t0,+∞) into R. Nn1 = {1, 2, . . . , n}, Mm

1 = {1, 2, . . . ,m}, where n,m ∈ R. In
addition, for any x = (x1, x2, . . . , xn) ∈ Rn, the 1-norm and 2-norm of x is defined
as ‖x‖1 =

∑n
ζ=1 |xζ | and ‖x‖2 = (

∑n
ζ=1 x

2
ζ)

1/2.

2 Preliminaries and model description

Some of the necessary definitions and lemmas are listed in this part.
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Definition 1. (See [18].) For a function Υ (∂), the ε-order Caputo fractional derivative is
defined as

c
∂0D

ε
∂Υ (∂) =

1

Γ(m− ε)

t∫
t0

Υ (m)(ς)

(∂ − ς)ε−m+1
dς, ∂ > ∂0, m− 1 < ε 6 m.

Definition 2. (See [18].) For 0 < s < 1 and m ∈ R, the Mittag-Leffler function with one
argument is defined as

Es(m) =

∞∑
ρ=0

mρ

Γ(ρs+ 1)
.

Lemma 1. (See [33].) Suppose function Υ (∂) is continuous and differentiable on ∂ ∈
[∂0,∞). Then for any constant h̆ and ∂ ∈ [∂0,∞),

c
∂0D

ε
∂

(
Υ (∂)− h̆

)2
6 2
(
Υ (∂)− h̆

) c
∂0
Dε
∂Υ (∂).

Lemma 2. (See [3].) For Υ (∂) ∈ C 1([∂0,+∞),R) and ε ∈ (0, 1),

c
∂0D

ε
∂

∣∣Υ (∂)
∣∣ 6 sign

(
Υ (∂)

)
c
∂0D

ε
∂Υ (∂), ∂ > ∂0.

Lemma 3. (See [18].) Let ∂ > ∂0. ThenEλ(ε(∂−∂0)λ) is monotonically nonincreasing,
and 0 6 Eλ(ε(∂ − ∂0)λ) 6 1 for ε 6 0.

Lemma 4. (See [5].) If function Υ (∂) ∈ C 1([∂0, +∞),R+) is positive defined and

c
∂0D

ε
∂Υ (∂) 6 −σ1Υ

−η1(∂)− σ2Υ
−η2(∂), Υ (∂) ∈ R+ \ {0},

where 0 < ε < 1, σ1 > 0, σ2 > 0, η1 > 0, and η1 < η2 < 1 + 2η1, then one has
lim∂→∂M Υ (∂) = 0, and Υ (∂) = 0, ∂ > ∂M with ∂M 6 T̃ , where

T̃ =

[
Γ(1+ε)

σ22(η2−2η1−1)/(1+η1)(1+η2)

((
Υ 1+η1(∂0)+

(
σ2

σ1

)(1+η1)/(η2−η1))(1+η2)/(1+η1)

−
(
σ2

σ1

)(1+η2)/(η2−η1))]1/ε

+ ∂0.

Remark 1. Compared with the fractional-order finite-time inequality (FO-FTI) in [6], the
FO-FTI established by Lemma 4 contains two nonlinear terms. Therefore, the controller
designed based on Lemma 4 is more flexible. In addition, when η2 = 0, Lemma 4
is simplified to Lemma 9 in [5]. When σ2 = 0, Lemma 4 is simplified to Lemma 8
in [10]. Further more, when η1 = 0, Lemma 4 is simplified to Lemma 4 in [13].
Therefore, the result of Lemma 4 is less conservative, and the obtained settling time is
more accurate.
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Lemma 5. (See [9].) Let Υ1(∂) and Υ2(∂) be two nonnegative, continuous functions
satisfying

c
∂0D

ε
∂

(
Υ1(∂) + Υ2(∂)

)
6 −εΥ1(∂) + ς,

where 0 < ε < 1, ε > 0, and ς > 0. Then

Υ1(∂) 6

(
Υ1(∂0) + Υ2(∂0)− ς

ε

)
Eε
(
−ε(∂ − t0)ε

)
+
ς

ε
, ∂ > ∂0 +

(
Γ(ε)

ε

)1/(1−ε)

.

Next, we consider the following FOFBAMNN:

c
∂0D

ε
∂χϑ(∂) = −pϑχϑ(∂) +

m∑
ν=1

ǎϑνΘν
(
Λν(∂)

)
+

m∧
ν=1

α̌ϑνΘν
(
Λν(∂ − τ̆)

)
+

m∨
ν=1

β̌ϑνΘν
(
Λν(∂ − τ̆)

)
+ Ĭϑ(∂),

c
∂0D

ε
∂Λν(∂) = −qνΛν(∂) +

n∑
ϑ=1

b̂νϑΞϑ
(
χϑ(∂)

)
+

n∧
ϑ=1

m̂νϑΞϑ
(
χϑ(∂ − τ̆)

)
+

n∨
ϑ=1

ŵνϑΞi
(
χϑ(∂ − τ̆)

)
+ Ĭν(∂),

(1)

where 0 < ε < 1, ϑ ∈ Nn1 , ν ∈Mm
1 . n and m represent the number of neurons in the first

and second layers, respectively. The neuron states are denoted by χϑ(∂) and Λν(∂), while
pϑ and qν signify positive decay rates. Elements of the feedback templates are represented
by ǎϑν and b̂νϑ, whereas α̌ϑν and m̂νϑ are part of the fuzzy feedback MAX templates, and
β̌ϑν and ŵνϑ are elements of the fuzzy feedback MIN templates. The activation functions
are denoted as Θν and Ξϑ with internal inputs given by Ĭϑ(∂) and Ĭν(∂). The constant
delay is represented by τ̆ , and

∧
and

∨
refer to the fuzzy AND and fuzzy OR operations,

respectively. The initial conditions of (1) can be described as

χϑ(s) = ϕ1
ϑ(s), Λν(s) = ψ1

ν(s), s ∈ [∂0 − τ̆ , ∂0], ϑ ∈ Nn1 , ν ∈Mm
1 .

Assumption 1. For any ϑ, ι ∈ N+ and ι, ι̃ ∈ R, there exist ξι > 0 and ρϑ > 0 such that
|Θι(ι)−Θι(ι̃)| 6 ξι|ι− ι̃| and |Ξϑ(ι)−Ξϑ(ι̃)| 6 ρϑ|ι− ι̃|.

Then the corresponding system for the drive system (1) can be written as follows:

c
∂0D

ε
∂χ̃ϑ(∂) = −pϑχ̃ϑ(∂) +

m∑
ν=1

ǎϑνΘν
(
Λ̃ν(∂)

)
+

m∧
ν=1

α̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
+

m∨
ν=1

β̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
+ Ĭϑ(∂) + uϑ(∂),

c
∂0D

ε
∂Λ̃ν(∂) = −qνΛ̃ν(∂) +

n∑
ϑ=1

b̂νϑΞϑ
(
χ̃ϑ(∂)

)
+

n∧
ϑ=1

m̂νϑΞϑ
(
χ̃ϑ(∂ − τ̆)

)
+

n∨
ϑ=1

ŵνϑΞi
(
χ̃ϑ(∂ − τ̆)

)
+ Ĭν(∂) + vν(∂).

(2)
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The initial conditions of the corresponding system (2) are

χϑ(s) = ϕ2
ϑ(s), Λν(s) = ψ2

ν(s), s ∈ [∂0 − τ̆ , ∂0], ϑ ∈ Nn1 , ν ∈Mm
1 .

The synchronization error is given by ẽϑ(∂) = χ̃ϑ(∂)−χϑ(∂) and z̃ν(∂) = Λ̃ν(∂)−
Λν(∂). From (1) and (2) the error system is formulated as follows:

c
∂0D

ε
∂ ẽϑ(∂) = −pϑẽϑ(∂) +

m∑
ν=1

ǎϑνΘν
(
Λ̃ν(∂)

)
−

m∑
ν=1

ǎϑνΘν
(
Λν(∂)

)
+

m∧
ν=1

α̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
−

m∧
ν=1

α̌ϑνΘν
(
Λν(∂ − τ̆)

)
+

m∨
ν=1

β̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
−

m∨
ν=1

β̌ϑνΘν
(
Λν(∂ − τ̆)

)
+ uϑ(∂),

c
∂0D

ε
∂ z̃ν(∂) = −qν z̃ν(∂) +

n∑
ϑ=1

b̂νϑΞϑ
(
χ̃ϑ(∂)

)
−

n∑
ϑ=1

b̂νϑΞϑ
(
χϑ(∂)

)
+

n∧
ϑ=1

m̂νϑΞϑ
(
χ̃ϑ(∂ − τ̆)

)
−

n∧
ϑ=1

m̂νϑΞϑ
(
χϑ(∂ − τ̆)

)
+

n∨
ϑ=1

ŵνϑΞϑ
(
χ̃ϑ(∂ − τ̆)

)
−

n∨
ϑ=1

ŵϑνΞϑ
(
χϑ(∂ − τ̆)

)
+ vν(∂).

(3)

Lemma 6. (See [31].) Let χν , Λν be two states of FOFBAMNNs (3). We can get∣∣∣∣∣
m∧
ν=1

α̌ϑνΘν(χν)−
m∧
ν=1

α̌ϑνΘν(Λν)

∣∣∣∣∣ 6
m∑
ν=1

∣∣α̌ϑν∣∣∣∣Θν(χν)−Θν(Λν)
∣∣,∣∣∣∣∣

m∨
ν=1

α̌ϑνΘν(χν)−
m∨
ν=1

α̌ϑνΘν(Λν)

∣∣∣∣∣ 6
m∑
ν=1

∣∣α̌ϑν∣∣∣∣Θν(χν)−Θν(Λν)
∣∣.

Definition 3. (See [30].) FOFBAMNNs (1) and (2) are said to be synchronized in finite
time if there is a constant T̃2 such that lim∂→T̃2

∑n
ϑ=1 |ẽϑ(∂)| +

∑m
ν=1 |z̃ν(∂)| = 0 and∑n

ϑ=1 |ẽϑ(∂)|+
∑m
ν=1 |z̃ν(∂)| ≡ 0 for ∂ > T̃2, where T̃2 is called the settling time.

Definition 4. (See [29].) FOFBAMNNs (1) and (2) are said to realize QS with error level
l > 0 if there exists T̃1 > 0 such that ‖E(∂)‖2 6 l for all ∂ > T̃1, where E(∂) =
(ẽ1(∂), ẽ2(∂), . . . , ẽn(∂), z̃1(∂), z̃2(∂), . . . , z̃m(∂))T.

3 Main results

3.1 FTS of FOFBAMNNs via hybrid controller

In this section, a hybrid controller is designed to implement FTS. In order to imple-
ment FTS between the FOFBAMNNs (1) and (2), we design the following hybrid
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controller:

uϑ(∂) = −ξ̃1 sign
(
ẽϑ(∂)

)∣∣ẽϑ(∂ − τ̆)
∣∣− δ̃1ẽϑ(∂)− ω̃1

ẽϑ(∂)

|ẽϑ(∂)|s1
− ρ̃1

ẽϑ(∂)

|ẽϑ(∂)|s2
,

vν(∂) = −ξ̃2 sign
(
z̃ν(∂)

)∣∣z̃ν(∂ − τ̆)
∣∣− δ̃2z̃ν(∂)− ω̃2

z̃ν(∂)

|z̃ν(∂)|s1
− ρ̃2

z̃ν(∂)

|z̃ν(∂)|s2
,

(4)

where ϑ ∈ Nn1 , ν ∈ Mm
1 , ξ̃1, ξ̃2, δ̃1, δ̃2, ω̃1, ω̃2, ρ̃1, ρ̃2 are positive constants, s1 > 2 and

s1 < s2 < 2s1 are tunable constants.

Theorem 1. Let Assumption 1 hold, and if control gains ξ̃1, ξ̃2, δ̃1, δ̃2 satisfy

δ̃1 > max
16ϑ6n

{
−pϑ +

m∑
ν=1

|b̂νϑ|ρϑ

}
, ξ̃1 > max

16ϑ6n

{
m∑
ν=1

(
|m̂νϑ|+ |ŵνϑ|

)
ρϑ

}
, (5)

δ̃2 > max
16ν6m

{
−qν +

n∑
ϑ=1

|ǎϑν |ξν

}
, ξ̃2 > max

16ν6m

{
n∑
ϑ=1

(
|α̌ϑν |+ |β̌ϑν |

)
ξν

}
, (6)

then the FOFBAMNNs (1) and (2) can realize FTS based on hybrid controller (4). Addi-
tionally, the settling time ∂M is given as ∂M 6 T̃1,

T̃1 =

[
Γ(1+ε)

σ22(s2−2s1)/s1s2

((
V s1(∂0) +

(
σ2

σ1

)s1/(s2−s1))s2/s1
−
(
σ2

σ1

)s2/(s2−s1))]1/ε

+ ∂0. (7)

Proof. Construct the Lyapunov function

U(∂) =

n∑
ϑ=1

∣∣ẽϑ(∂)
∣∣+

m∑
ν=1

|z̃ν(∂)
∣∣.

Utilizing Lemma 2, we derive

c
∂0D

ε
∂U(∂) 6

n∑
ϑ=1

sign
(
ẽϑ(∂)

)
c
t0D

ε
t ẽϑ(∂) +

m∑
ν=1

sign
(
z̃ν(∂)

)
c
t0D

ε
t z̃ν(∂). (8)

Substituting (3) and (4) into (8) yields
c
∂0D

ε
∂U(∂)

6
n∑
ϑ=1

sign
(
ẽϑ(∂)

)[
−pϑẽϑ(∂) +

m∑
ν=1

ǎϑνΘν
(
Λ̃ν(∂)

)
−

m∑
ν=1

ǎϑνΘν
(
Λν(∂)

)
+

m∧
ν=1

α̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
−

m∧
ν=1

α̌ϑνΘν(Λν(∂ − τ̆)
)

+

m∨
ν=1

β̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
−

m∨
ν=1

β̌ϑνΘν(Λν(∂ − τ̆)
)

− ξ̃1 sign(ẽϑ(∂)
)∣∣ẽϑ(∂ − τ̆)

∣∣− δ̃1ẽϑ(∂)− ω̃1
ẽϑ(∂)

|ẽϑ(∂)|s1
− ρ̃1

ẽϑ(∂)

|ẽϑ(∂)|s2

]
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+

m∑
ν=1

sign(z̃ν(∂)
)[
−qν z̃ν(∂) +

n∑
ϑ=1

b̂νϑΞϑ(χ̃ϑ(∂)
)
−

n∑
ϑ=1

b̂νϑΞϑ(χϑ(∂)
)

+

n∧
ϑ=1

m̂νϑΞϑ(χ̃ϑ(∂ − τ̆)
)
−

n∧
ϑ=1

m̂νϑΞϑ(χϑ(∂ − τ̆)
)

+

n∨
ϑ=1

ŵνϑΞϑ(χ̃ϑ(∂ − τ̆)
)
−

n∨
ϑ=1

ŵνϑΞϑ(χϑ(∂ − τ̆)
)

− ξ̃2 sign(z̃ν(∂)
)∣∣z̃ν(∂ − τ̆)

∣∣− δ̃2z̃ν(∂)− ω̃2
z̃ν(∂)

|z̃ν(∂)|s1
− ρ̃2

z̃ν(∂)

|z̃ν(∂)|s2

]

6
n∑
ϑ=1

[
−pϑ

∣∣ẽϑ(∂)
∣∣+

m∑
ν=1

|ǎϑν
∣∣ξν |z̃ν(∂)

∣∣+

m∑
ν=1

(
|α̌ϑν |+ |β̌ϑν |

)
ξν
∣∣z̃ν(∂ − τ̆)

∣∣
− ξ̃1

∣∣ẽϑ(∂ − τ̆)
∣∣− δ̃1∣∣ẽϑ(∂)

∣∣− ω̃1

∣∣ẽϑ(∂)
∣∣1−s1 − ρ̃1

∣∣ẽϑ(∂)
∣∣1−s2]

+

m∑
ν=1

[
−qν

∣∣z̃ν(∂)
∣∣+

n∑
ϑ=1

|b̂νϑ
∣∣ρϑ|ẽϑ(∂)

∣∣+

n∑
ϑ=1

(
|m̂νϑ|+ |ŵνϑ|

)
ρϑ
∣∣ẽϑ(∂ − τ̆)

∣∣
− ξ̃2

∣∣z̃ν(∂ − τ̆)
∣∣− δ̃2∣∣z̃ν(∂)

∣∣− ω̃2

∣∣z̃ν(∂)
∣∣1−s1 − ρ̃2

∣∣z̃ν(∂)
∣∣1−s2]

=

n∑
ϑ=1

(
−pϑ − δ̃1 +

m∑
ν=1

|b̂νϑ|ρϑ

)∣∣ẽϑ(∂)
∣∣− n∑

ϑ=1

ω̃1

∣∣ẽϑ(∂)
∣∣1−s1

+

m∑
ν=1

(
−qν − δ̃2 +

n∑
ϑ=1

|ǎϑν |ξν

)∣∣z̃ν(∂)
∣∣− m∑

ν=1

ω̃2

∣∣z̃ν(∂)
∣∣1−s1

+

n∑
ϑ=1

(
−ξ̃1 +

m∑
ν=1

(
|m̂νϑ|+ |ŵνϑ|

)
ρϑ

)∣∣ẽϑ(∂ − τ̆)
∣∣

+

m∑
ν=1

(
−ξ̃2 +

n∑
ϑ=1

(
|α̌ϑν |+ |β̌ϑν |

)
ξν

)∣∣z̃ν(∂ − τ̆)
∣∣

−
n∑
ϑ=1

ρ̃1

∣∣ẽϑ(∂)
∣∣1−s2 − m∑

ν=1

ρ̃2

∣∣z̃ν(∂)
∣∣1−s2 . (9)

From (5), (6), and (9) one has

c
∂0D

ε
∂U(∂) 6 −

n∑
ϑ=1

ω̃1

∣∣ẽϑ(∂)
∣∣1−s1 − n∑

ϑ=1

ρ̃1

∣∣ẽϑ(∂)
∣∣1−s2

−
m∑
ν=1

ω̃2

∣∣z̃ν(∂)
∣∣1−s1 − m∑

ν=1

ρ̃2

∣∣z̃ν(∂)
∣∣1−s2 . (10)

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Finite-time synchronization and quasi-synchronization of FOFBAMNNs 9

For s1 > 1, this yields

n∑
ϑ=1

∣∣ẽϑ(∂)
∣∣1−s1 > n

(
n∑
ϑ=1

ẽϑ(∂)

)1−s1

(11)

and
m∑
ν=1

∣∣z̃ν(∂)
∣∣1−s1 > m

(
m∑
ν=1

z̃ν(∂)

)1−s1

. (12)

Similarly, for s1 < s2 < 2s1, this yields

n∑
ϑ=1

∣∣ẽϑ(∂)
∣∣1−s2 > n

(
n∑
ϑ=1

ẽϑ(∂)

)1−s2

(13)

and
m∑
ν=1

∣∣z̃ν(∂)
∣∣1−s2 > m

(
m∑
ν=1

z̃ν(∂)

)1−s2

. (14)

From (10)–(14) one has
c
∂0D

ε
∂U(∂) 6 −nω̃1V

−(s1−1)
1 (∂)− nρ̃1V

−(s2−1)
1 (∂)

−mω̃2V
−(s1−1)
2 (∂)−mρ̃2V

−(s2−1)
2 (∂).

Let σ1 = min{nω̃1, mω̃2} > 0, σ2 = min{nρ̃1, mρ̃2} > 0. One has

c
∂0D

ε
∂U(∂) 6 −σ1V

−(s1−1)
1 (∂)− σ2V

−(s2−1)
1 (∂)

− σ1V
−(s1−1)
2 (∂)− σ2V

−(s2−1)
2 (∂)

− σ2

(
V
−(s2−1)
1 (∂) + V

−(s2−1)
2 (∂)

)
6 −σ1V

−(s1−1)(∂)− σ2V
−(s2−1)(∂).

According to Lemma 4, the FOFBAMNNs in (1) can implement FTS with the FOF-
BAMNNs in (2) by employing the hybrid controller (4), and the corresponding settling
time ∂M can be determined by (7).

Remark 2. The hybrid controller (4) consists of three components: −δ̃1ẽϑ(∂), which
mitigates the quasi-linear growth within the linear term; −ξ̃1 sign(ẽϑ(∂))|ẽϑ(∂ − τ̆)|,
which mitigates the impacts of the time-delay term; and−ω̃1ẽϑ(∂)/|ẽϑ(∂)|s1− ρ̃1ẽϑ(∂)/
|ẽϑ(∂)|s2 , which ensures FTS between systems (1) and (2) with ω̃1 and ρ̃1 adjustable for
synchronization time. Compared to linear feedback controllers [30], this hybrid approach
is more adaptable and effective, especially in handling nonlinearity and high uncertainty.

Remark 3. The settling times in Theorem 1 and Lemma 4 are derived using algebraic
inequalities that are straightforward to compute, making them easy to estimate in both
theoretical studies and practical applications. Moreover, compared to the methods for
estimating settling times in [10] and [13], the approach presented in this paper provides
more precise results.
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3.2 QS of FOFBAMNNs via adaptive controller

In this section, to ensure QS between FOFBAMNNs (1) and (2), we propose the following
adaptive control strategy:

uϑ(∂) =


−γχϑ (∂)eϑ(∂)− sign(ẽϑ(∂))Ψχϑ (∂)ẽ2ϑ(∂−τ̆)

|eϑ(∂)|
+ ε1 sign(ẽϑ(∂))

|ẽϑ(∂)| , |ẽϑ(∂)| 6= 0,

0, |ẽϑ(∂)| = 0,

c
t0D

ε
tγ
χ
ϑ (∂) = λϑẽ

2
ϑ(∂)− µ1

(
γχϑ (∂)− r∗1ϑ

)
,

c
t0D

ε
tΨ

χ
ϑ (∂) = θϑẽ

2
ϑ(∂ − τ̆)− µ2

(
Ψχϑ (∂)− r∗2ϑ

)
,

vν(∂) =


−γΛν (∂)z̃ν(∂)− sign(z̃ν(∂))ΨΛν (∂)z̃2ν(∂−τ̆)

|z̃ν(∂)|
+ ε2 sign(z̃ν(∂))

|z̃ν(∂)| , |z̃ν(∂)| 6= 0,

0, |z̃ν(∂)| = 0,

c
t0D

ε
tγ
Λ
ν (∂) = ζν z̃

2
ν(∂)− µ3

(
γΛν (∂)− r∗3ν

)
,

c
t0D

ε
tΨ

Λ
ν (∂) = ην z̃

2
ν(∂ − τ̆)− µ4

(
ΨΛν (∂)− r∗4ν

)
.

(15)

Theorem 2. Let Assumption 1 be satisfied, and let ω̄ = min{ω̄1, ω̄2}, h1, h2 < 0,
ε = nε1 +mε2. If

ω̄1 = min
ϑ∈Nn1

{
pϑ −

m∑
ν=1

ξν
2

(
|ǎϑν |+ |α̌ϑν |+ |β̌ϑν |

)
+ r∗1ϑ −

m∑
ν=1

ρϑ
2
|b̂νϑ|

}
> 0,

ω̄2 = min
ν∈Mm1

{
qν −

n∑
ϑ=1

ρϑ
2

(
|b̂νϑ|+ |m̂νϑ|+ |ŵνϑ|

)
+ r∗3ν −

n∑
ϑ=1

ξν
2
|ǎϑν |

}
> 0,

h1 = max
ϑ∈Nn1

{
−r∗2ϑ +

m∑
ν=1

ρϑ
2

(
|m̂νϑ|+ |ŵνϑ|

)}
< 0,

h2 = max
ν∈Mm1

{
−r∗4ν +

n∑
ϑ=1

ξν
2

(
|α̌ϑν |+ |β̌ϑν |

)}
< 0,

QS can be implemented between FOFBAMNNs (1) and (2) under controller (15).

Proof. Construct the Lyapunov function U(∂) = U1(∂) + U2(∂), where

U1(∂) =
n∑
ϑ=1

ẽ2
ϑ(∂) +

m∑
ν=1

z̃2
ν(∂),

U2(∂) =

n∑
ϑ=1

(
γχϑ (∂)− r∗1ϑ

)2
2λϑ

+

n∑
ϑ=1

(Ψχϑ (∂)− r∗2ϑ)2

2θϑ

+

m∑
ν=1

(γΛν (∂)− r∗3ν)2

2ζν
+

m∑
ν=1

(ΨΛν (∂)− r∗4ν)2

2ην
.
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Utilizing Lemma 1, we obtain

c
∂0D

ε
∂U(∂)

6
n∑
ϑ=1

ẽϑ(∂) ct0D
ε
t ẽϑ(∂) +

m∑
ν=1

z̃ν(∂) ct0D
ε
t z̃ν(∂)

+

n∑
ϑ=1

1

λϑ

(
γχϑ (∂)− r∗1ϑ

)
c
t0D

ε
tγ
χ
ϑ (∂) +

n∑
ϑ=1

1

θϑ

(
Ψχϑ (∂)− r∗2ϑ

)
c
t0D

ε
tΨ

χ
ϑ (∂)

+

m∑
ν=1

1

ζν

(
γΛν (∂)− r∗3ν

)
c
t0D

ε
tγ
Λ
ν (∂) +

m∑
ν=1

1

ην

(
ΨΛν (∂)− r∗4ν

)
c
t0D

ε
tΨ

Λ
ν (∂). (16)

Substituting (3) and (15) into (16) yields

c
∂0D

ε
∂U(∂) 6

n∑
ϑ=1

ẽϑ(∂)

[
−pϑẽϑ(∂) +

m∑
ν=1

ǎϑνΘν
(
Λ̃ν(∂)

)
−

m∑
ν=1

ǎϑνΘν
(
Λν(∂)

)
+

m∧
ν=1

α̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
−

m∧
ν=1

α̌ϑνΘν
(
Λν(∂ − τ̆)

)
+

m∨
ν=1

β̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
−

m∨
ν=1

β̌ϑνΘν
(
Λν(∂ − τ̆)

)]

+

m∑
ν=1

z̃ν(∂)

[
−qν z̃ν(∂) +

n∑
ϑ=1

b̂νϑΞϑ
(
χ̃ϑ(∂)

)
−

n∑
ϑ=1

b̂νϑΞϑ
(
χϑ(∂)

)
+

n∧
ϑ=1

m̂νϑΞϑ
(
χ̃ϑ(∂ − τ̆)

)
−

n∧
ϑ=1

m̂νϑΞϑ
(
χϑ(∂ − τ̆)

)
+

n∨
ϑ=1

ŵνϑΞϑ
(
χ̃ϑ(∂ − τ̆)

)
−

n∨
ϑ=1

ŵϑνΞϑ
(
χϑ(∂ − τ̆)

)]

+

n∑
ϑ=1

(
γχϑ (∂)− r∗1ϑ

)
ẽ2
ϑ(∂) +

n∑
ϑ=1

(
Ψχϑ (∂)− r∗2ϑ

)
ẽ2
ϑ(∂ − τ̆)

+

m∑
ν=1

(
γΛν (∂)− r∗3ν

)
z̃2
ν(∂) +

m∑
ν=1

(
ΨΛν (∂)− r∗4ν

)
z̃2
ν(∂ − τ̆)

+

n∑
ϑ=1

ẽϑ(∂)uϑ(∂) +

m∑
ν=1

z̃ν(∂)vν(∂)

−
n∑
ϑ=1

µ1

λϑ

(
γχϑ (∂)− r∗1ϑ

)2 − n∑
ϑ=1

µ2

θϑ

(
Ψχϑ (∂)− r∗2ϑ

)2
−

m∑
ν=1

µ3

ζν

(
γΛν (∂)− r∗3ν

)2 − m∑
ν=1

µ4

ην

(
ΨΛν (∂)− r∗4ν

)2
. (17)
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With Assumption 1 and basic inequality 2ab 6 a2 + b2 for any a, b > 0, this yields

n∑
ϑ=1

ẽϑ(∂)

(
m∑
ν=1

ǎϑνΘν
(
Λ̃ν(∂)

)
−

m∑
ν=1

âϑνΘν
(
Λν(∂)

))

6
n∑
ϑ=1

m∑
ν=1

|ǎϑν |ξν
∣∣z̃ν(∂)

∣∣∣∣ẽν(∂)
∣∣

6
n∑
ϑ=1

m∑
ν=1

|ǎϑν |
ξν
2

(
ẽ2
ϑ(∂) + z̃2

ν(∂)
)
. (18)

Similarly, we derive

m∑
ν=1

z̃ν(∂)

(
n∑
ϑ=1

b̂νϑΞϑ
(
χ̃ϑ(∂)

)
−

n∑
ϑ=1

b̂νϑΞϑ
(
χϑ(∂)

))

6
m∑
ν=1

n∑
ϑ=1

|b̂νϑ|
ρϑ
2

(
ẽ2
ϑ(∂) + z̃2

ν(∂)
)
. (19)

According to Assumption 1 and Lemma 6, we have

ẽϑ(∂)

(
m∧
ν=1

α̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
−

m∧
ν=1

α̌ϑνΘν
(
Λν(∂ − τ̆)

))

6
m∑
ν=1

|α̌ϑν |
ξν
2

(
ẽ2
ϑ(∂) + z̃2

ν(∂ − τ̆)
)
, (20)

ẽϑ(∂)

(
m∨
ν=1

β̌ϑνΘν
(
Λ̃ν(∂ − τ̆)

)
−

m∨
ν=1

β̌ϑνΘν
(
Λν(∂ − τ̆)

))

6
m∑
ν=1

|β̌ϑν |
ξν
2

(
ẽ2
ϑ(∂) + z̃2

ν(∂ − τ̆)
)
, (21)

z̃ν(∂)

(
n∧
ϑ=1

m̂νϑΞϑ
(
χ̃ϑ(∂ − τ̆)

)
−

n∧
ϑ=1

m̂νϑΞϑ
(
χϑ(∂ − τ̆)

))

6
n∑
ϑ=1

|m̂νϑ|
ρϑ
2

(
z̃2
ν(∂) + ẽ2

ϑ(∂ − τ̆)
)
, (22)

z̃ν(∂)

(
n∧
ϑ=1

ŵνϑΞϑ
(
χ̃ϑ(∂ − τ̆)

)
−

n∧
ϑ=1

ŵνϑΞϑ
(
χϑ(∂ − τ̆)

))

6
n∑
ϑ=1

|ŵνϑ|
ρϑ
2

(
z̃2
ν(∂) + ẽ2

ϑ(∂ − τ̆)
)
. (23)
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Substituting (18)–(23) and (15) into (17), one has
c
∂0D

ε
∂U(∂)

6
n∑
ϑ=1

[
−pϑ +

m∑
ν=1

ξν
2

(
|ǎϑν |+ |α̌ϑν |+ |β̌ϑν |

)
− r∗1ϑ +

m∑
ν=1

ρϑ
2
|b̂νϑ|

]
ẽ2
ϑ(∂)

+

m∑
ν=1

[
−qν +

n∑
ϑ=1

ρϑ
2

(
|b̂νϑ|+ |m̂νϑ|+ |ŵνϑ|

)
− r∗3ν +

n∑
ϑ=1

ξν
2
|ǎϑν |

]
z̃2
ν(∂)

+

m∑
ν=1

[
−r∗4ν +

n∑
ϑ=1

ξν
2

(
|α̌ϑν |+ |β̌ϑν |

)]
z̃2
ν(∂ − τ̆) +

n∑
ϑ=1

ε1 +

m∑
ν=1

ε2

+

n∑
ϑ=1

[
−r∗2ϑ +

m∑
ν=1

ρϑ
2

(
|m̂νϑ|+ |ŵνϑ|

)]
ẽ2
ϑ(∂ − τ̆).

Then from the conditions of the theorem we can derive

c
∂0D

ε
∂U(∂) 6 −

n∑
ϑ=1

ω̄1ẽ
2
ϑ(∂)−

m∑
ν=1

ω̄2z̃
2
ν(∂) + ε

6 −ω̄U1(∂) + ε. (24)

Utilizing Lemma 5 and according to (24), this yields

U1(∂) 6

(
U(∂0)− ε

ω̄

)
Eε
(
−ω̄(∂ − ∂0)ε

)
+
ε

ω̄
, ∂ > ∂0 +

(
Γ(ε)

ω̄

)1/(1−ε)

. (25)

It can be derived from Definition 4 and (25) that

∥∥E(∂)
∥∥

2
6

√(
U(∂0)− ε

ω̄

)
Eε
(
−ω̄(∂ − ∂0)ε

)
+
ε

ω̄
.

Utilizing Lemma 3, one has

lim
∂→+∞

∥∥E(∂)
∥∥

2
6

(
ε

ω̄

)1/2

,

the proof is completed.

Remark 4. Unlike adaptive controllers [16] and linear feedback controllers [30], this
paper proposes a novel adaptive nonlinear feedback controller specifically designed to
tackle the QS problem in FOFBAMNNs for the first time. As a result, controller (15) we
developed is more efficient, widely applicable, and less conservative.

Remark 5. The adaptive nonlinear controller (15) herein includes adaptive nonlinear con-
troller u1ϑ(∂) = −γχϑ (∂)eϑ(∂), adaptive delayed controller u2ϑ(∂) = − sign(ẽϑ(∂))×
Ψχϑ (∂)ẽ2

ϑ(∂ − τ̆)/|eϑ(∂)|, and nonlinear controller u3ϑ(∂) = ε1 sign(ẽϑ(∂))/|ẽϑ(∂)|. It
should be noted that u2ϑ(∂) is constructed to counteract negative impact from time delays,
while u1ϑ(∂) and u3ϑ(∂) are to ensure QS between systems (1) and (2).
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4 Illustrative examples

Two examples are provided below to further demonstrate the effectiveness of the conclu-
sions derived from the theorem.

Example 1. The two-dimensional FOFBAMNNs models are considered in the following:

c
∂0D

ε
∂χϑ(∂) = −pϑχϑ(∂) +

2∑
ν=1

ǎϑνΘν
(
Λϑ(∂)

)
+

2∧
ν=1

α̌ϑνΘν
(
Λν(∂ − τ̆)

)
+

2∨
ν=1

β̌ϑνΘν(Λν(∂ − τ̆)
)

+ Ĭϑ(∂),

c
∂0D

ε
∂Λν(∂) = −qνΛν(∂) +

2∑
ϑ=1

b̂νϑΞϑ
(
χϑ(∂)

)
+

2∧
ϑ=1

mνϑΞϑ
(
χϑ(∂ − τ̆)

)
+

2∨
ϑ=1

ŵνϑΞϑ
(
χϑ(∂ − τ̆)

)
+ Ĭν(∂),

(26)

where ε = 0.98, ϑ, ν = 1, 2, p1 = p2 = 0.01, q1 = q2 = 0.01, ǎ11 = −0.4, ǎ12 =
−0.25, ǎ21 = 0.3, ǎ22 = −0.15, b̂11 = −0.3, b̂12 = −0.15, b̂21 = −0.25, b̂22 = −0.2,
α̌11 = 0.03, α̌12 = −0.05, α̌21 = −0.03, α̌22 = 0.02, m̂11 = 0.04, m̂12 = −0.05,
m̂21 = 0.05, m̂22 = −0.1, β̌11 = 0.2, β̌12 = −0.05, β̌21 = −0.12, β̌22 = 0.3,
ŵ11 = −0.05, ŵ12 = −0.05, ŵ21 = 0.3, ŵ22 = −0.1, τ̆ = 1. Besides, the activation
functions are selected as Θν(·) = Ξϑ(·) = tanh(·), Ĭϑ(∂) = Ĭν(∂) = 0. By calculation,
we have ξ1 = ξ2 = ρ1 = ρ2 = 1. All the initial value of system (26) are set as

χ1(s) = −2.01, Λ1(s) = −2.15,

χ2(s) = −1, Λ2(s) = 1.5.

Figure 1 expresses the changes of state variables without a controller, the controlled
FOFBAMNNs is depicted by

c
t0D

ε
tχϑ(∂) = −pϑχϑ(∂) +

2∑
ν=1

ǎϑνΘν
(
Λϑ(∂)

)
+

2∧
ν=1

α̌ϑνΘν
(
Λν(∂ − τ̆)

)
+

2∨
ν=1

β̌ϑνΘν
(
Λν(∂ − τ̆)

)
+ Ĭϑ(∂) + uϑ(∂),

c
t0D

ε
tΛν(∂) = −qνΛν(∂) +

2∑
ϑ=1

b̂νϑΞϑ
(
χϑ(∂)

)
+

2∧
ϑ=1

mνϑΞϑ
(
χϑ(∂ − τ̆)

)
+

2∨
ϑ=1

ŵνϑΞϑ
(
χϑ(∂ − τ̆)

)
+ Ĭν(∂) + vν(∂),

(27)

where ϑ, ν = 1, 2, and the initial value is chosen as

χ̃1(s) = −2.06, Λ̃1(s) = 2.7,

χ̃2(s) = 2.1, Λ̃2(s) = −2.3.
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The other parameters of FOFBAMNNs (27) are the same as those of (26). To ensure
FTS, controller (4) is designed with its parameters configured as follows: ξ̃1 = ξ̃2 =
0.75, δ̃1 = δ̃2 = 17, ω̃1 = ω̃2 = 0.08, ρ̃1 = ρ̃2 = 0.08, s1 = 2.01, s2 = 2.1. By
calculation, we can verify that (5)–(6) are satisfied. Then systems (26) and (27) can reach
FTS. Additionally, the setting time ∂M is estimated as

∂M 6

[
Γ(1 + ε)

σ22(s2−2s1)/s1s2

((
V s1(∂0) +

(
σ2

σ1

)s1/(s2−s1))s2/s1
−
(
σ2

σ1

)s2/(s2−s1))]1/ε

+ ∂0 = 7.8556.

Figure 2 illustrates the variations in state variables when applying controller (4),
indicating that systems (26) and (27) can implement FTS under controller (4). The error
curves for the drive–response system, ẽ1(∂), ẽ2(∂), z̃1(∂), and z̃2(∂), are depicted in
Fig. 3. As seen in Fig. 3, ẽ1(∂) and ẽ2(∂) both become zero, along with z̃1(∂) and z̃2(∂)
when ∂ > 0.5, which provides additional verification of Theorem 1.

Example 2. For the delayed FOFBAMNNs (26) and (27), we choose: ε = 0.98, ϑ, ν =
1, 2, p1 = p2 = 0.3, q1 = q2 = 0.4, ǎ11 = 0.1, ǎ12 = −0.25, ǎ21 = 0.2, ǎ22 = −0.15,
b̂11 = −0.3, b̂12 = −0.15, b̂21 = 0.15, b̂22 = −0.2, α̌11 = 0.13, α̌12 = −0.05,
α̌21 = −0.15, α̌22 = 0.02, m̂11 = 0.14, m̂12 = −0.15, m̂21 = 0.15, m̂22 = −0.5,
β̌11 = 0.14, β̌12 = −0.05, β̌21 = −0.12, β̌22 = 0.6, ŵ11 = −0.15, ŵ12 = −0.05,
ŵ21 = 0.16, ŵ22 = −0.3, τ̆ = 1. Besides, the activation functions are selected as
Θν(·) = Ξϑ(·) = tanh(·), Ĭϑ(∂) = Ĭν(∂) = 0. By calculation, we have ξ1 = ξ2 = ρ1 =
ρ2 = 1. All initial values of systems (26) and (27) are reset as follows:

χ1(s) = 0.01, χ2(s) = 1, Λ1(s) = 0.05, Λ2(s) = −0.5,

χ̃1(s) = 0.06, χ̃2(s) = 0.1, Λ̃1(s) = 0.0.7, Λ̃2(s) = −0.3.

Figure 4 depicts the phase trajectories of system (26) without controller. We can see
from Fig. 4 that system (26) has chaotic behavior. The behavior of the system is difficult
to predict and is highly sensitive to initial conditions. Figure 5 displays the states of
systems (26) and (27) without a controller. From the figure we can clearly observe that the
trajectories of the two systems do not converge over time, indicating that synchronization
is not achieved.

To implement QS, for controller (15), we choose ε1 = ε2 = 0.01, λ1 = λ2 = 0.2,
θ1 = θ2 = 0.2, ζ1 = ζ2 = 0.1, η1 = η2 = 0.1, µ1 = µ2 = 0.6, µ3 = µ4 = 1.5,
r∗11 = 2, r∗12 = 2.2, r∗21 = 2.4, r∗22 = 2.5, r∗31 = 0.65, r∗32 = 0.6, r∗41 = 0.68,
r∗42 = 0.7. By calculation, it can be obtained that ω̄1 = 1.705, ω̄2 = 0.07, h1 = −2,
h2 = −0.34, ε = 0.04 that satisfies the theorem conditions. Hence, systems (26) and
(27) can achieve QS with controller (15). Additionally, the error bond is estimated as
(ε/ω̄)1/2 ≈ 0.7559.

Figure 6 displays the curves of state variables with controller (15). It is easy to see that
synchronization between systems (26) and (27) is not possible. Figure 7 shows the error
norm curves, which fluctuate within a narrow range over time. That is, the error functions
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(a) χϑ(∂) and χ̃ϑ(∂) (b) Λν(∂) and Λ̃ν(∂)

Figure 1. Trajectory of state variables without a controller.

(a) χϑ(∂) and χ̃ϑ(∂) (b) Λν(∂) and Λ̃ν(∂)

Figure 2. Trajectory of the state variables based under controller (4).

Figure 3. Synchronization errors ẽϑ(∂) and z̃ν(∂) under controller (4).

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Finite-time synchronization and quasi-synchronization of FOFBAMNNs 17

(a) χ1(t) and χ2(t) (b) Λ1(t) and Λ2(t)

Figure 4. Phase trajectories of FOFBAMNN (26).

(a) χϑ(∂) and χ̃ϑ(∂) (b) Λν(∂) and Λ̃ν(∂)

Figure 5. Trajectory of state variables without a controller.

(a) χϑ(∂) and χ̃ϑ(∂) (b) Λν(∂) and Λ̃ν(∂)

Figure 6. Trajectory of the state variables based under controller (15).
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Figure 7. Synchronization error with controller (15) between systems (26) and (27).

(a) γχϑ (∂) and γΛν (∂) (b) Ψxϑ (∂) and ΨΛν (∂)

Figure 8. The evolution of adaptive feedback gains, ϑ, ν = 1, 2.

tends to be stable. Figures 6 and 7 illustrate that systems (26) and (27) can achieve QS
under controller (15). Figure 8 illustrates the evolution of the adaptive feedback gains of
controller (15).

5 Conclusion

This paper focuses on addressing the FTS and QS problems in FOFBAMNNs. Unlike
previous studies that used adaptive controllers [16] or linear feedback controllers [30],
this work proposes two novel controllers specifically designed for FTS and QS. Based on
the finite-time theorem, Lyapunov theory, and inequality techniques, the paper establishes
several criteria to achieve FTS and QS. In addition, the QS error analysis can be extended
to the CS of complex-valued FOFBAMNNs with time-varying delays and parameter
uncertainties. Two examples are provided to validate the theoretical results. It is also
noted that in many cases, accurately measuring state delays is impractical, making the
development of finite-time convergence results under time delays an important topic for
future research.
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