Discrete Universality of the Derivatives of L-Functions of Elliptic Curves
Physical Sciences
Daina Baravykienė
• Radviliškio technologijų ir verslo mokymo centro Šeduvos technologijų ir verslo mokymo skyrius
Antanas Garbaliauskas
Šiauliai State Higher Education Institution
Virginija Garbaliauskienė
Šiauliai University
Published 2020-12-07
https://doi.org/10.21277/jmd.v50i2.296

Keywords

elliptic curve
L-function of an elliptic curves
limit theorem
discrete universality

How to Cite

Baravykienė, D., Garbaliauskas, A. and Garbaliauskienė, V. (2020) “Discrete Universality of the Derivatives of L-Functions of Elliptic Curves”, Jaunųjų mokslininkų darbai, 50(2), pp. 46–50. doi:10.21277/jmd.v50i2.296.

Abstract

In the paper, we prove the discrete universality theorem in the sense of the weak convergence of probability measures in the space of analytic functions for the derivatives of L-functions of elliptic curves. We consider an approximation of analytic functions by translations LE (s + imh), where h > 0 is a fixed number, the translations of the imaginary part of the complex variable take values from some arithmetical progression. We suppose that the number h > 0 is choosen so that exp{2πk/h} is an irrational number for all k ∈ Z \{0}. The proof of discrete universality of the derivative L-functions of elliptic curves is based on a limit theorem in the sense of weak convergence of probability measures in the space of analytic functions.

Downloads

Download data is not yet available.

Most read articles by the same author(s)